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(HPC SCHEDULERS )

Reservation-based batch schedulers:
» Relies on (reasonably) accurate runtime estimation from the user/application
» Two queues: (i) large (main) jobs; (ii) small jobs used for backfilling

» Cost to users: Pay what you use - need to guarantee that the time asked is sufficient
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» Cost to users: Pay what you use - need to guarantee that the time asked is sufficient
Under-estimation

» Job killed, need to resubmit; additional cost to user
» Waste of system resources




(HPC SCHEDULERS )

Reservation-based batch schedulers:

» Relies on (reasonably) accurate runtime estimation from the user/application
» Two queues: (i) large (main) jobs; (ii) small jobs used for backfilling

» Cost to users: Pay what you use - need to guarantee that the time asked is sufficient
Over-estimation

» Penalties due to wasting system resources

» Backfilling algorithms might be needed
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I have two platforms:

© Platform A: I pay what I use, 1.5$ per hour.

2 Platform B: I book some time and pay what I book, 1$ per hour.
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. T have one job J3 whose
| execution time is
| between 2h and 98h.



[NEURQSCIENCE APPLICATIONS]

Often the execution time of an application is unknown before it runs.
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Figure: Traces [2013-2016] of neuroscience apps (Vanderbilt’s medical imaging database).

These applications are input dependent, but predicting the exact execution time is hard
even when knowing the input.
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Figure: Traces [2013-2016] of neuroscience apps (Vanderbilt’s medical imaging database).

In our previous work we provide the optimal sequence of requests based on: (i) a model

of the applications; (ii) a model of the platforms; (iii) resiliency schemes available
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[EXAMPLE SEQUENCE OF REQUESTS]

For the job with exec between 2h and 98h:
(assuming it cannot use checkpointing)

Strategy: t1 = 5h, t2 = 40h, t3 = 60h, t4 = 98h.

If the job is 33h:
1t We run the 5h reservation; it fails

2 Then we run the 40h; it succeeds.

Total cost is the cost for both reservations



[EXAMPLE SEQUENCE OF REQUESTS]

For the job with exec between 2h and 98h:
(assuming it cannot use checkpointing)

Strategy: t1 = 5h, t2 = 40h, t3 = 60h, t4 = 98h.
If the job is 33h:

1t We run the 5h reservation; it fails

2 Then we run the 40h; it succeeds.

Total cost is the cost for both reservations

More information in our paper:

Ana Gainaru, Guillaume Pallez, Hongyang Sun, Padma Raghavan: Speculative Scheduling for
Stochastic HPC' Applications. ICPP 2019: 32:1-32:10
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[RESULT 3: ROBUSTNESS?]

‘ Q: It seems to work, but how do you know the job distribution? ‘

50, M=91837.394, 0=20549.332

200

. s - . . L150
» Dealing with incomplete/low volume of information? 5
O 100

» Here, we consider we know N previous runs for instance. o

0 50000 X 100090 ‘150000
Execution time (s)

Reservation strategies

» Strat. 1 (Discrete): Use those N elements to compute a reservation strategy;

» Strat. 2 (Continuous): Approximate discrete cumulative function with a
continuous cumulative function; use this new distribution to compute a reservation
strategy.



(COMPUTING THE DISCRETE CDF )
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Figure: Use discrete data to define the CDF
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(COMPUTING THE DISCRETE CDF )

Figure: Using 10 random samples for computing the CDF
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(COMPUTING THE DISCRETE CDF )

Figure: Using 10 random samples for computing the CDF
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[COMPUTE THE SEQUENCE OF REQUESTS]

For a job of length t, we define the cost of a
reservation t1 as:
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» Setup cost (mix of

Figure: Example sequence of requests using all Reservation/ Utilization)

data or interpolating 10 random samples




[DEEINE THE COST OF A SEQUENCE]

The cost for a sequence of requests to the user is:

k—1

i=1

Clk,t) =Y (ati + Bti +7) + aty + Bt +

where k is the smallest index in the sequence such that ¢ < ¢ .

optimal.

Expected Makespan Loss (EML) The relative cost loss of a sequence compared to the



(SYNTHETIC RESULTS)
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Figure: Results for the truncated normal distributions (left: low variance, middle: high variance)
and the truncated exponential distribution (right)

The Semi-clairvoyant strategy knows the distributions and only finds the best

parameters




(SIMULATING CODE CHANGES )

Applications whose historic walltimes have shifts in behavior
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[NEUROSCIENCE APPLICATIONS]
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Figure: Using the CDF fit by interpolation or discrete data for different size of training sets

» Continuous fit and discrete data become very similar as we increase the number of
samples

» Continuous gives a good fit for the CDF even for 10 datapoints
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(NEUROSCIENCE APPLICATIONS )
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Figure: Results for real neuroscience applications (Vanderbilt’s medical imaging database)
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[SIMULATING TWO WEEKS OF STOCHASTIC HPC]
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Figure: Running 6 neuroscience applications for a two week timespan

» Average job stretch is improved by 25% when using only 10 previous runs

» Training on 100 samples improves utilization by 25%
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(Concrusions)

» Speculative scheduling can be used, even in the presence of incomplete information
» Fitting continuous data seems to show benefits in all studied cases

» Applications do not need many previous runs to start using our scheme

More research is needed

» To understand shifts in behavior from applications

on application behavior

» Design better predictors that can guide our strategy depending on domain knowledge
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